Tokamak ion temperature determination via cw far-infrared laser scattering from externally excited ion Bernstein waves

Abstract
The paper describes a successful proof-of-principle experimental determination of tokamak ion temperature using cw far-infrared (FIR) collective laser scattering from externally excited ion Bernstein waves. It is shown that a viable wave excitation technique for tokamak plasmas is mode conversion of an externally launched fast Alfvén wave. A fit of the experimentally determined ion Bernstein wave dispersion to the temperature-dependent theoretical dispersion yields the local ion temperature. Partial ion temperature profiles (chord-averaged) have been obtained with temperature values consistent with charge-exchange measurements.