Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks.
Open Access
- 1 March 1986
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 77 (3) , 810-823
- https://doi.org/10.1172/jci112378
Abstract
To test the hypothesis that a defibrillation shock is unsuccessful because it fails to annihilate activation fronts within a critical mass of myocardium, we recorded epicardial and transmural activation in 11 open-chest dogs during electrically induced ventricular fibrillation (VF). Shocks of 1-30 J were delivered through defibrillation electrodes on the left ventricular apex and right atrium. Simultaneous recordings were made from septal, intramural, and epicardial electrodes in various combinations. Immediately after all 104 unsuccessful and 116 successful defibrillation shocks, an isoelectric interval much longer than that observed during preshock VF occurred. During this time no epicardial, septal, or intramural activations were observed. This isoelectric window averaged 64 +/- 22 ms after unsuccessful defibrillation and 339 +/- 292 ms after successful defibrillation (P less than 0.02). After the isoelectric window of unsuccessful shocks, earliest activation was recorded from the base of the ventricles, which was the area farthest from the apical defibrillation electrode. Activation was synchronized for one or two cycles following unsuccessful shocks, after which VF regenerated. Thus, after both successful and unsuccessful defibrillation with epicardial shocks of greater than or equal to 1 J, an isoelectric window occurs during which no activation fronts are present; the postshock isoelectric window is shorter for unsuccessful than for successful defibrillation; unsuccessful shocks transiently synchronize activation before fibrillation regenerates; activation leading to the regeneration of VF after the isoelectric window for unsuccessful shocks originates in areas away from the defibrillation electrodes. The isoelectric window does not support the hypothesis that defibrillation fails solely because activation fronts are not halted within a critical mass of myocardium. Rather, unsuccessful epicardial shocks of greater than or equal to 1 J halt all activation fronts after which VF regenerates.This publication has 33 references indexed in Scilit:
- Development of an endocardial-epicardial gradient of activation rate during electrically induced, sustained ventricular fibrillation in dogsThe American Journal of Cardiology, 1985
- Computer techniques for epicardial and endocardial mappingProgress in Cardiovascular Diseases, 1983
- A system for the parametric description of the ventricular surface of the heartComputers and Biomedical Research, 1981
- Termination of Malignant Ventricular Arrhythmias with an Implanted Automatic Defibrillator in Human BeingsNew England Journal of Medicine, 1980
- Effect of pentobarbital anesthesia on ventricular defibrillation threshold in dogsAmerican Heart Journal, 1978
- Local Potential Gradients as a Unifying Measure for Thresholds of Stimulation, Standstill, Tachyarrhythmia and Fibrillation Appearing After Strong Capacitor Discharges1Published by S. Karger AG ,1978
- Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The "leading circle" concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.Circulation Research, 1977
- Closed chest defibrillation of the heart.1957
- The Excitability Cycle of the Dog's Left Ventricle Determined by Anodal, Cathodal, and Bipolar StimulationCirculation Research, 1956
- Vulnerability to Fibrillation and the Ventricular-Excitability CurveAmerican Journal of Physiology-Legacy Content, 1951