Interannual Variability of Summer Water Balance Components in Three Major River Basins of Northern Eurasia

Abstract
This study investigated water balance components in the three major river basins of Siberia (the Lena, Yenisey, and Ob) based on the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Atmospheric Model Intercomparison Project II (AMIP-II) reanalysis. The primary focus is the nature of the interannual signatures of summer precipitation, moisture convergence, and runoff in individual basins, and their linkage to the large-scale water transport and circulation fields over northern Eurasia from 1979 to 1995. The temporal characteristics of the hydrological cycle and the associated large-scale circulation structure are discussed. Some interesting features are found in the interannual variability of basin-scale hydrometeorological elements. In the Lena and Ob basins, the temporal signatures of both precipitation and moisture convergence indicate a cycle of approximately 6 to 8 yr. The mid- and late-summer runoff variation is significantly correlated with these two elements.... Abstract This study investigated water balance components in the three major river basins of Siberia (the Lena, Yenisey, and Ob) based on the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Atmospheric Model Intercomparison Project II (AMIP-II) reanalysis. The primary focus is the nature of the interannual signatures of summer precipitation, moisture convergence, and runoff in individual basins, and their linkage to the large-scale water transport and circulation fields over northern Eurasia from 1979 to 1995. The temporal characteristics of the hydrological cycle and the associated large-scale circulation structure are discussed. Some interesting features are found in the interannual variability of basin-scale hydrometeorological elements. In the Lena and Ob basins, the temporal signatures of both precipitation and moisture convergence indicate a cycle of approximately 6 to 8 yr. The mid- and late-summer runoff variation is significantly correlated with these two elements....