Glyphosate Effects on Carbon Assimilation and Gas Exchange in Sugar Beet Leaves
- 1 October 1987
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 85 (2) , 365-369
- https://doi.org/10.1104/pp.85.2.365
Abstract
The mechanism responsible for the inhibition of net carbon exchange (NCE) which was reported previously (DR Geiger et al. 1986 Plant Physiol 82: 468-472) was investigated by applying glyphosate [N-(phosphonomethyl)glycine] to exporting leaves of sugar beet (Beta vulgaris L.). Leaf internal CO2 concentration (Ci) remained constant despite decreases in stomatal conductance and NCE following glyphosate treatment, indicating that the cause of the inhibition was a slowing of carbon assimilation rather than decreased conductance of CO2. Throughout a range of CO2 concentrations, NCE rate at a given Ci declined gradually, with the time-series of response curves remaining parallel. Gas exchange measurements revealed that disruption of chloroplast carbon metabolism was an early and important factor in mediating these glyphosate effects, perhaps by slowing the rate of ribulose bisphosphate regeneration. An increase in the CO2 compensation point accompanied the decrease in NCE and this increase was hastened by stepwise lowering of the ambient CO2 concentration. Eventually the CO2 compensation point approached the CO2 level of air and the difference between internal and external CO2 concentrations decreased. In control and in glyphosate-treated plants, both carbon assimilation and photorespiration at atmospheric CO2 level were inhibited to a similar extent of air level of O2. Maintaining leaves in low O2 concentration did not prevent the decline in NCE rate.Keywords
This publication has 11 references indexed in Scilit:
- Salinity and Nitrogen Effects on Photosynthesis, Ribulose-1,5-Bisphosphate Carboxylase and Metabolite Pool Sizes in Phaseolus vulgaris L.Plant Physiology, 1986
- Glyphosate Inhibits Photosynthesis and Allocation of Carbon to Starch in Sugar Beet LeavesPlant Physiology, 1986
- Effects of glyphosate [N‐(phosphonomethyl)glycine] on photosynthetic pigments, stomatal response and photosynthetic electron transport in Medicago sativa and Trifolium pratensePhysiologia Plantarum, 1986
- Carbon Partitioning and Herbicide Transport in Glyphosate-Treated Sugarbeet (Beta vulgaris)Weed Science, 1984
- Enzymological Basis for Herbicidal Action of GlyphosatePlant Physiology, 1982
- A portable system for measuring carbon dioxide and water vapour exchange of leavesPlant, Cell & Environment, 1982
- The Site of the Inhibition of the Shikimate Pathway by GlyphosatePlant Physiology, 1980
- Glyphosate Does Not Inhibit Photosynthetic Electron Transport and Phosphorylation in Pea (Pisum sativum) ChloroplastsWeed Science, 1979
- Somatal cycling in Phaseolus vulgaris L. In response to glyphosatePlant Science Letters, 1979
- Photosynthate Partitioning in Sugarbeet1Crop Science, 1978