`Superresonance' from a rotating acoustic black hole

Abstract
Using the analogy between a shrinking fluid vortex (`draining bathtub'), modelled as a (2+1) dimensional fluid flow with a sink at the origin, and a rotating (2+1) dimensional black hole with an ergosphere, it is shown that a scalar sound wave is reflected from such a vortex with an {\it amplification} for a specific range of frequencies of the incident wave, depending on the angular velocity of rotation of the vortex. We discuss the possibility of observation of this phenomenon, especially for inviscid fluids like liquid HeII, where vortices with quantized angular momentum may occur.

This publication has 0 references indexed in Scilit: