Abstract
A computer simulation model of the nonstationary Doppler ultrasound signals arising from pulsatile blood flow is presented. The model uses sinusoidal components that are modulated by a power spectral density function that varies over the cardiac cycle. An empirical model consisting of two exponential functions is used to represent both the continuous wave and pulsed Doppler power spectral density for normal carotid arteries. It is shown that the spectrogram speckle patterns of the synthesized Doppler signals compare very well with those clinically recorded.<>