Abstract
Mast cells are positioned in the asthmatic airways so that they are able to respond to the inhaled environment. During active disease, the cells are primed to secrete an array of preformed and newly generated inflammatory mediators including histamine, neutral proteases and heparin sulphate, prostaglandins and cysteinyl leukotrienes as well as an array of cytokines and chemokines that are involved in leucocyte recruitment and activation. These cells are a potent source of mediators in both allergen‐ and exercise‐induced asthma and possibly in asthma provoked by other stimuli such as adenosine and inhaled air pollutants. The important role played by mast cells in maintaining airway dysfunction in asthma is underpinned by the efficacy of mediator inhibitors, such as those interfering with the release or action of the leukotrienes, agents that inhibit mast cell activation such as sodium cromoglycate and the recently studied E‐20 humanized monoclonal antibody that binds to and removes IgE. The recent discovery of novel inhibitory pathways involving inhibitory motifs (ITIMS) on critical cell surface signalling molecules has opened up new possibilities for preventing mast cell activation. Future research will focus on more effective ways for inhibiting the mast cell's contribution to asthma and understanding what role this unique cell has in the pathogenesis of airway wall remodelling.