Greatest of the Least Primes in Arithmetic Progressions Having a Given Modulus
- 1 July 1979
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 33 (147) , 1073-1080
- https://doi.org/10.2307/2006082
Abstract
We give a heuristic argument, supported by numerical evidence, which suggests that the maximum, taken over the reduced residue classes modulo k, of the least prime in the class, is usually about $\phi (k)\log k\log \phi (k)$, where $\phi$ is Euler’s phi-function.
Keywords
This publication has 7 references indexed in Scilit:
- A note on the least prime in an arithmetic progressionJournal of Number Theory, 1980
- The Irregular Primes to 125000Mathematics of Computation, 1978
- Almost-primes in arithmetic progressions and short intervalsMathematical Proceedings of the Cambridge Philosophical Society, 1978
- Real zeros of the Dedekind zeta function of an imaginary quadratic fieldActa Arithmetica, 1968
- Über Primzahlen in arithmetischen Folgen. IIMathematische Annalen, 1964
- Remark on the paper of K. Prachar „Über die kleinste Primzahl einer arithmetischen Reihe“.Journal für die reine und angewandte Mathematik (Crelles Journal), 1962
- Über die kleinste Primzahl einer arithmetischen Reihe.Journal für die reine und angewandte Mathematik (Crelles Journal), 1961