Host–Symbiont Stability and Fast Evolutionary Rates in an Ant–Bacterium Association: Cospeciation of Camponotus Species and Their Endosymbionts, Candidatus Blochmannia
Open Access
- 1 February 2004
- journal article
- research article
- Published by Oxford University Press (OUP) in Systematic Biology
- Vol. 53 (1) , 95-110
- https://doi.org/10.1080/10635150490264842
Abstract
Bacterial endosymbionts are widespread across several insect orders and are involved in interactions ranging from obligate mutualism to reproductive parasitism. Candidatus Blochmannia gen. nov. (Blochmannia) is an obligate bacterial associate of Camponotus and related ant genera (Hymenoptera: Formicidae). The occurrence of Blochmannia in all Camponotus species sampled from field populations and its maternal transmission to host offspring suggest that this bacterium is engaged in a long-term, stable association with its ant hosts. However, evidence for cospeciation in this system is equivocal because previous phylogenetic studies were based on limited gene sampling, lacked statistical analysis of congruence, and have even suggested host switching. We compared phylogenies of host genes (the nuclear EF-1αF2 and mitochondrial COI/II) and Blochmannia genes (16S ribosomal DNA [rDNA], groEL, gidA, and rpsB), totaling more than 7 kilobases for each of 16 Camponotus species. Each data set was analyzed using maximum likelihood and Bayesian phylogenetic reconstruction methods. We found minimal conflict among host and symbiont phylogenies, and the few areas of discordance occurred at deep nodes that were poorly supported by individual data sets. Concatenated protein-coding genes produced a very well-resolved tree that, based on the Shimodaira–Hasegawa test, did not conflict with any host or symbiont data set. Correlated rates of synonymous substitution (dS) along corresponding branches of host and symbiont phylogenies further supported the hypothesis of cospeciation. These findings indicate that Blochmannia–Camponotus symbiosis has been evolutionarily stable throughout tens of millions of years. Based on inferred divergence times among the ant hosts, we estimated rates of sequence evolution of Blochmannia to be ∼ 0.0024 substitutions per site per million years (s/s/MY) for the 16S rDNA gene and ∼ 0.1094 s/s/MY at synonymous positions of the genes sampled. These rates are several-fold higher than those for related bacteria Buchnera aphidicola and Escherichia coli. Phylogenetic congruence among Blochmannia genes indicates genome stability that typifies primary endosymbionts of insects.Keywords
This publication has 80 references indexed in Scilit:
- Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidiaNature Genetics, 2002
- A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae, infered from phylogenetic analysis based on a heterogeneous model of DNA evolutionComptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 2001
- New insights into symbiotic associations between ants and bacteriaResearch in Microbiology, 2000
- Sequence evolution in bacterial endosymbionts having extreme base compositionsMolecular Biology and Evolution, 1999
- Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse fliesInsect Molecular Biology, 1999
- Concordant Evolution of a Symbiont with Its Host Insect Species: Molecular Phylogeny of Genus Glossina and Its Bacteriome-Associated Endosymbiont, Wigglesworthia glossinidiaJournal of Molecular Evolution, 1999
- Distribution of chromosome length variation in natural isolates of Escherichia coliMolecular Biology and Evolution, 1998
- Molecular Phylogenetic Study of a Myrmecophyte Symbiosis: DidLeonardoxa/Ant Associations Diversify via Cospeciation?Molecular Phylogenetics and Evolution, 1996
- GENETICS, PHYSIOLOGY, AND EVOLUTIONARY RELATIONSHIPS OF THE GENUS BUCHNERA: Intracellular Symbionts of AphidsAnnual Review of Microbiology, 1995
- Hennig's Parasitological Method: A Proposed SolutionSystematic Zoology, 1981