Identification and immune regulation of 25-hydroxyvitamin D-1-α-hydroxylase in murine macrophages
Open Access
- 1 April 2000
- journal article
- Published by Oxford University Press (OUP) in Clinical and Experimental Immunology
- Vol. 120 (1) , 139-146
- https://doi.org/10.1046/j.1365-2249.2000.01204.x
Abstract
Receptors for 1,25(OH)2vitaminD3 are found in most immune cells and important immunological effects have been described in vitro, reflected by its capacity to prevent autoimmunity and to prolong graft survival. The aim of this study was to examine the presence and nature of the enzyme responsible for final activation of the molecule, 1‐α‐hydroxylase, in murine macrophages and to analyse its regulation and possible role in the immune system. Peritoneal macrophages from C57Bl/6 mice were incubated with lipopolysaccharide (LPS; 100 μg/ml), interferon‐gamma (IFN‐γ; 500 U/ml) or a combination of both. By quantitative reverse transcriptase‐polymerase chain reaction, using primers based on the murine renal cDNA sequence, low levels of 1‐α‐hydroxylase mRNA were detected in freshly isolated cells (18 ± 7 × 10−6 copies/β‐actin copies). Analysis of the cDNA sequence of the gene revealed identical coding sequences for the macrophage and renal enzymes. mRNA levels rose three‐fold with LPS (NS), but a six‐fold increase was seen after IFN‐γ stimulation (P < 0·05). Combining LPS and IFN‐γ did not result in a major additional increase, but addition of cyclosporin A further increased levels 2·5‐fold both in IFN‐γ‐ and combination‐stimulated cells (P < 0·05). Time course analysis revealed that up‐regulation of 1‐α‐hydroxylase was a late phenomenon, preceded by the up‐regulation of activating macrophage products such as IL‐1 and tumour necrosis factor‐alpha. Finally, a defect in 1‐α‐hydroxylase up‐regulation by immune stimuli was found in autoimmune non‐obese diabetic mice. In conclusion, we propose that the up‐regulation of 1‐α‐hydroxylase in activated macrophages, resulting in the synthesis of 1,25(OH)2D3, might be a negative feedback loop in inflammation. A defect in this system might be an additional element in tipping the balance towards autoimmunity.Keywords
This publication has 40 references indexed in Scilit:
- The importance of 25-hydroxyvitamin D3 1α-hydroxylase gene in vitamin D-dependent ricketsCurrent Opinion in Nephrology and Hypertension, 1998
- PREVENTION OF AUTOIMMUNE DESTRUCTION OF SYNGENEIC ISLET GRAFTS IN SPONTANEOUSLY DIABETIC NONOBESE DIABETIC MICE BY A COMBINATION OF AVITAMIN D3 ANALOG AND CYCLOSPORINE1Transplantation, 1998
- Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene.Journal of Clinical Investigation, 1998
- Molecular Cloning of cDNA and Genomic DNA for Human 25-hydroxyvitamin D31α-hydroxylaseBiochemical and Biophysical Research Communications, 1997
- Insulin-like Growth Factor I, a Unique Calcium-dependent Stimulator of 1,25-Dihydroxyvitamin D3 ProductionJournal of Biological Chemistry, 1995
- Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1 α, 25-(OH)2D3Journal of Neuroimmunology, 1995
- Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060Endocrinology, 1995
- NOD mouse colonies around the world- recent facts and figuresImmunology Today, 1993
- Vitamin D and the immune systemJournal of Endocrinology, 1992
- γ-interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophagesBiochemical and Biophysical Research Communications, 1985