Inverse Scattering Technique of Soliton Theory, Lie Algebras, the Quantum Mechanical Poisson-Moyal Bracket, and the Rotating Rigid Body
- 13 December 1976
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 37 (24) , 1591-1593
- https://doi.org/10.1103/physrevlett.37.1591
Abstract
The Lax equation of nonlinear wave theory is described in a purely Lie-algebraic context. A realization—independent of linear operator theory—which leads to the Kortewegde Vries equation is described in terms of the Poisson-Moyal Lie algebra of quantum mechanics. This approach leads to a generalization of the Euler rigid-body equations.Keywords
This publication has 3 references indexed in Scilit:
- Quantization from the algebraic viewpointJournal of Mathematical Physics, 1976
- Integrals of nonlinear equations of evolution and solitary wavesCommunications on Pure and Applied Mathematics, 1968
- Quantum mechanics as a statistical theoryMathematical Proceedings of the Cambridge Philosophical Society, 1949