Closed-streamline flows past rotating single cylinders and spheres: inertia effects

Abstract
The flow around a cylinder and a sphere rotating freely in a simple shear was studied experimentally for moderate values of the shear Reynolds numberRe.For a freely rotating cylinder, the data were found to be consistent with the results obtained numerically by Kossack & Acrivos (1974), at least for Reynolds numbers up to about 10. Rates of rotation of a freely suspended sphere were also obtained over the same range of Reynolds numbers and showed that, with increasingRe, the dimensionless angular velocity does not decrease as fast for a sphere as it does for a cylinder. In both cases, photographs of the streamline patterns around the objects were consistent with this behaviour. Furthermore, it was found in each case that the asymptotic solutions forRe[Lt ] 1 derived by Robertson & Acrivos (1970) for a cylinder and by Lin, Peery & Schowalter (1970) for a sphere are not valid for Reynolds numbers greater than about 0.1, and that the flow remains steady only up to values ofReof about 6.