Stress Initiated During Isolation of Rat Renal Proximal Tubules Limits in Vitro Survival

Abstract
The effects of oxidative damage were assessed in rat proximal tubule fragments (isolated by collagenase perfusion) by monitoring lactate dehydrogenase release (LDH-R) to measure cell viability and thiobarbituric acid (TBA) reactive material to follow oxidative damage. Increasing the oxygen content in the incubation atmosphere from 10 to 95% significantly increased LDH-R and TBA reactants. Addition of butylated hydroxytoluene or deferoxamine (DF) to the medium prevented these changes, but ascorbic acid or mannitol had no positive effect. Lima bean trypsin inhibitor also reduced LDH leakage significantly when added to the medium, but not when added to the perfusion buffers. In contrast, adding DF to the perfusate during tubule isolation produced the most pronounced benefit; net LDH-R after 4 hr was about 10% in tubules prepared this way compared to 20% when DF was omitted. Basal oxygen consumption declined to approximately the same extent as LDH-R increased. Maintenance of nystatin-stimulated respiration, ATP/ADP, GSH content and total adenine nucleotides indicated good cell function. These results suggest that oxidative damage initiated during the tubule isolation procedure limits cell survival but this effect can be counteracted substantially by the addition of DF to the perfusion buffer.