Random survival forests
Preprint
- 11 November 2008
Abstract
We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package, randomSurvivalForest.Keywords
All Related Versions
- Version 1, 2008-11-11, ArXiv
- Published version: The Annals of Applied Statistics, 2 (3), 841.
This publication has 0 references indexed in Scilit: