• preprint
    • Published in RePEc
Abstract
A þT consistent estimator of a heteroskedasticity and autocorrelation consistent covariance matrix estimator is proposed and evaluated. The relevant applications are ones in which the regression disturbance follows a moving average process of known order. In a system of þ equations, this `MA-þ' estimator entails estimation of the moving average coefficients of an þ-dimensional vector. Simulations indicate that the MA-þ estimator's finite sample performance is better than that of the estimators of Andrews and Monahan (1992) and Newey and West (1994) when cross-products of instruments and disturbances are sharply negatively autocorrelated, comparable or slightly worse otherwise.
All Related Versions

This publication has 0 references indexed in Scilit: