The Effect of a Spherical Protuberance on the Local Heat Transfer to a Turbulent Boundary Layer

Abstract
Local heat transfer coefficients are presented for a single spherical protuberance on a plate, along which the boundary layer was turbulent, for air speeds from 50 to 150 fps. Two spheres were used to produce ratios of sphere diameter to boundary-layer thickness of the order of 2 and 0.7. The heat transfer coefficient behind the sphere depends approximately on the eight-tenths power of the velocity, its maximum is located about 2 dia downstream of the sphere, and the downstream effect is limited spanwise to a region about 4 dia in width.

This publication has 0 references indexed in Scilit: