The Continuous Elongation Technique for Severe Dupuytren’s Disease

Abstract
Continuous extension of Dupuytren’s contracture prior to fasciectomy results in a softening of the tissue, allowing straightening of the fingers. The observed change in cross-link profile indicates an increase in newly synthesised collagen due to increased turnover. This was confirmed by demonstration of the increases in levels of the degradative enzymes, the neutral metalloproteinases, collagenase and gelatinase and the acidic cathepsins B and L. Both types of enzyme effectively depolymerize the collagen fibres, albeit by different mechanisms, leading initially to loss of tensile strength and ultimately to solubilization. We suggest that the increase in enzyme activity is generated by tension on the fibroblasts of this metabolically active tissue produced during the continuous extension of the retracted fingers. The weakening of the fibres by degradation and the increase in newly synthezised collagen provide an explanation for the extension of the tissue without trauma.