Abstract
The synthesis of a series of novel cationic lipids through the systematic substitution of cholesterol derivatives that could greatly enhance the delivery and expression of plasmid DNA in vitro and in vivo is described. Two of the newly synthesized lipids, designated as NCC4 and NCC10, were chosen to be studied in detail and gave much higher levels of gene expression than that which could be obtained with some of the conventional cationic polymers and cationic liposomes. In vivo studies with both NCC4 and NCC10 also showed better ability in delivering the reporter gene to the target cells through intrasplenic injection. In addition, by varying the DNA/lipid charge ratios, NCC4 and NCC10 can withstand serum inactivation in vitro. However, this does not correlate with the corresponding increase in the level of gene expression following systemic gene delivery with NCC4 and NCC10 in vivo.