Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension

Abstract
The single electron Green's function of the one-dimensional Tomonaga-Luttinger model in the presence of open boundaries is calculated with bosonization methods. We show that the critical exponents of the local spectral density and of the momentum distribution change in the presence of a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated regime for small energies or small momenta. We show this crossover explicitly for the large-U Hubbard model in the low-temperature limit. Consequences for photoemission experiments are discussed.