Convex cores of measures on R d

Abstract
We define the convex core of a finite Borel measure Q on R d as the intersection of all convex Borel sets C with Q(C) =Q(R d). It consists exactly of means of probability measures dominated by Q. Geometric and measure-theoretic properties of convex cores are studied, including behaviour under certain operations on measures. Convex cores are characterized as those convex sets that have at most countable number of faces.

This publication has 2 references indexed in Scilit: