Abstract
A phylogeny of the meiofaunal polychaete family Nerillidae based on morphological, molecular and combined data is presented here. The data sets comprise nearly complete sequences of 18S rDNA and 40 morphological characters of 17 taxa. Sequences were analyzed simultaneously with the morphological data by direct optimization in the program POY, with a variety of parameter sets (costs of gaps: transversions: transitions). Three outgroups were selected from the major polychaete group Aciculata and one from Scolecida. The 13 nerillid species from 11 genera were monophyletic in all analyses with very high support, and three new apomorphies for Nerillidae are identified. The topology of the ingroup varied according to the various parameter settings. Reducing the number of outgroups to one decreased the variance among the phylogenetic hypotheses. The congruence among these was tested and a parameter set, with equal weights (222) and extension gap weighted 1, yielded minimum incongruence (ILD). Several terminal clades of the combined analysis were highly supported, as well as the position of Leptonerilla prospera as sister terminal to the other nerillids. The evolution of morphological characters such as segment numbers, chaetae, appendages and ciliation are traced and discussed. A regressive pathway within Nerillidae is indicated for several characters, however, generally implying several convergent losses. Numerous genera are shown to require revision.© The Willi Hennig Society 2005.