Force-velocity relationship of myogenically active arterioles

Abstract
We compared the shortening velocity of smooth muscle in arterioles that had low or high levels of myogenic tone or norepinephrine (NE)-induced tone. We hypothesized that enhanced myogenic tone of arterioles reflects an enhanced maximum velocity of shortening of arteriolar smooth muscle in a way that is different from that produced by NE. These concepts are untested assumptions of arteriolar mechanics. Second-order arterioles from hamster cheek pouch (passive diameter at 40 mmHg = 42 μm) were isolated and cannulated for in vitro study. In the absence of flow, pressure was controlled by hydraulic pumps so that servo control of wall tension could be achieved from measurement of internal diameter and pressure. Isotonic quick-release protocols were used to measure the initial velocity of shortening following release from control wall tension (afterload) to a series of fractional afterloads. After release, the initial rates of shortening were fit to the Hill equation to obtain coefficients for a hyperbolic fit of the velocity-afterload relationship. The maximal unloaded shortening velocity for partially activated arterioles ( V′max) was determined from the y-intercept of each plot. Using this procedure, we compared V′max from two groups of arterioles equilibrated at low or high pressure, i.e., with low or high myogenic tone. Arterioles with higher myogenic tone had higher values of V′max than arterioles with lower myogenic tone. V′max for arterioles partially activated with NE at low pressure was comparable to V′max for arterioles with high myogenic tone, but NE produced high velocities at low force, whereas enhanced myogenic tone produced roughly parallel shifts in velocity and force. The results suggest that increased myogenic tone does indeed reflect enhanced activation of arteriolar smooth muscle, and this effect is mechanically different from that produced by NE.