Abstract
Visibility is one of the key factors in determining the outcome of battles. With the advent of long-range, moving target, air-to-ground surveillance radars, the motion of both the observing platform and the target have added to the visibility problem, which heretofore was analyzed in terms of shielding. The interaction of such factors as the minimum detectable velocity of the target, the trajectories of the target and the airborne radar platform, and the terrain and foliage masking combine to control the amount of time which a target is observed in a given scenario. This report continues the work done on dynamic masking, compares the masking calculation with and without foliage on a typical super highway in New England, and finally examines the correlation between predicted and observed foliage and terrain masking. The work was done in connection with the test and evaluation of the Multiple Antenna Surveillance Radar (MASR), a scaled model of a long-range moving target surveillance system. MASR operated at L-band with a beamwidth of approximately 4.5 deg. In typical flight operation it observed the target complex from a range of 25 to 40 km. The altitude was selected to give lookdown angles ranging from 3 deg to 6 deg.

This publication has 0 references indexed in Scilit: