The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes

Abstract
Xylem-tapping mistletoes are known to have normally a higher rate of transpiration and lower water-use efficiency than their hosts. The relationships between water relations, nutrients and growth were investigated for Phoradendron juniperinum growing on Juniperus osteosperma (a non-nitrogen-fixing tree) and for Phoradendron californicum growing on Acacia greggii (a nitrogen-fixing tree). Xylem sap nitrogen contents were approximately 3.5 times higher in the nitrogen-fixing host than in the non-nitrogen-fixing host. The results of the present study show that mistletoe growth rates were sevenfold greater on a nitrogen-fixing host. At the same time, however, the differences in water-use efficiency between mistletoes and their hosts, which were observed on the non-nitrogen-fixing host did not exist when mistletoes were grown on hosts with higher nitrogen contents in their xylem sap. Growth rates and the accumulation of N, P, K, and Ca as well as values for carbon-isotope ratios of mistletoe tissues support the hypothesis that the higher transpiration rates of mistletoes represent a nitrogen-gathering mechanism.