Note on Kowalewski's Top in Quantum Mechanics
- 1 April 1933
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 43 (7) , 548-551
- https://doi.org/10.1103/physrev.43.548
Abstract
It is well known that in classical mechanics algebraic integrals of the top equations only exist in the cases of Euler (asymmetric top, no electric moment), of Lagrange (symmetric top, electric moment parallel to the axis of figure) and of Kowalewski. The latter case is that of a symmetric top whose two equal moments of inertia are twice as large as the third () with an electric moment perpendicular to the axis of figure. The quantum mechanical analogue to Euler's and Lagrange's cases being well known, Kowalewski's case was tried. If , , are the Euler angles, , linear combinations of the momenta around the principal axes and then Kowalewski's integral becomes: which differs from the classical result by the symmetrization and by the last term proportional to .
Keywords
This publication has 11 references indexed in Scilit:
- Zur Quantelung des asymmetrischen Kreisels. IIIThe European Physical Journal A, 1930
- Zur Frage der Quantelung des asymmetrischen KreiselsThe European Physical Journal A, 1929
- On the Asymmetrical Top in Quantum MechanicsPhysical Review B, 1929
- Zur Quantelung des asymmetrischen KreiselsThe European Physical Journal A, 1929
- Zur Quantelung des asymmetrischen Kreisels. IIThe European Physical Journal A, 1929
- Die Quantelung des symmetrischen Kreisels nach Schrödingers UndulationsmechanikThe European Physical Journal A, 1927
- The Symmetrical Top in the Undulatory MechanicsPhysical Review B, 1927
- Die Quantelung des symmetrischen Kreisels nach Schrödingers UndulationsmechanikThe European Physical Journal A, 1926
- Recherche des intégrales algébriques dans le mouvement d'un solide pesant autour d'un point fixeAnnales de la faculté des sciences de Toulouse Mathématiques, 1906
- Sur le probleme de la rotation d'un corps solide autour d'un point fixeActa Mathematica, 1889