Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera
- 3 November 2001
- journal article
- research article
- Published by Wiley in Environmental Toxicology and Chemistry
- Vol. 20 (11) , 2482-2486
- https://doi.org/10.1002/etc.5620201113
Abstract
Imidaclopridi a systemic nitroguanidine insecticide that belongs to theneonicotinoid family. As an agonist of the acetylcholine receptor, it attacks the insect nervous system and is extremely effective against various sucking and mining pests. Oral acute and chronic toxicity of imidacloprid and its main metabolites (5‐hydroxyimidacloprid, 4,5‐dihydroxyimidacloprid, desnitroimidacloprid, 6‐chloronicotinic acid, olefin, and urea derivative) were investigated in Apis mellifera. Acute intoxication by imidacloprid or its metabolites resulted in the rapid appearance of neurotoxicity symptoms, such as hyperresponsiveness, hyperactivity, and trembling and led to hyporesponsiveness and hypoactivity. For acute toxicity tests, bees were treated with doses of toxic compounds ranging from 1 to 1,000 ng/bee (10–10,000 μg/kg). Acute toxicity (LD50) values of imidacloprid were about 60 ng/bee (600 μg/kg) at 48 h and about 40 ng/bee (400 μg/kg) at 72 and 96 h. Out of the six imidacloprid metabolites tested, only two (5‐hydroxyimidacloprid and olefin) exhibited a toxicity close to that of imidacloprid. Olefin LD50 values were lower than those of imidacloprid. The 5‐hydroxyimidacloprid showed a lower toxicity than imidacloprid with a LD50 four to six times higher than that of imidacloprid. Urea also appeared as a compound of nonnegligible toxicity by eliciting close to 40% mortality at 1,000 ng/bee (10,000 μg/kg). However, no significant toxicity was observed with 4,5‐dihydroxyimidacloprid, 6‐chloronicotinic acid, and desnitroimidacloprid in the range of doses tested. To test chronic toxicity, worker bees were fed sucrose solutions containing 0.1, 1, and 10 μg/L of imidacloprid and its metabolites for 10 d. Fifty percent mortality was reached at approximately 8 d. Hence, considering that sucrose syrup was consumed at the mean rate of 12 μl/d and per bee, after an 8‐d period the cumulated doses were approximately 0.01, 0.1, and 1 ng/bee (0.1, 1, and 10 μg/kg). Thus, all tested compounds were toxic at doses 30 to 3,000 (olefin), 60 to 6,000 (imidacloprid), 200 to 20,000 (5‐OH‐imidacloprid), and >1,000 to 100,000 (remaining metabolites) times lower than those required to produce the same effect in acute intoxication studies. For all products tested, bee mortality was induced only 72 h after the onset of intoxication.Keywords
This publication has 17 references indexed in Scilit:
- Characteristics of imidacloprid toxicity in two Apis mellifera subspeciesEnvironmental Toxicology and Chemistry, 2000
- [3H]Imidacloprid Labels High- and Low-Affinity Nicotinic Acetylcholine Receptor-like Binding Sites in the AphidMyzus persicae(Hemiptera: Aphididae)Pesticide Biochemistry and Physiology, 1998
- Lethal and sublethal effects of imidacloprid on apple maggot fly, Rhagoletis pomonella Walsh (Dipt., Tephritidae)Journal of Applied Entomology, 1998
- Efficacy of plant metabolites of imidacloprid againstMyzus persicaeandAphis gossypii(Homoptera: Aphididae)Pesticide Science, 1998
- Cross-Resistance to Imidacloprid in Strains of German Cockroach (Blattella germanica) and House Fly (Musca domestica)Pesticide Science, 1997
- Pharmacological Effects of Imidacloprid and Its Related Compounds on the Nicotinic Acetyicholine Receptor with Its Ion Channel from the Torpedo Electric OrganJournal of Pesticide Science, 1995
- Nitromethylene Heterocycles: Selective Agonists of Nicotinic Receptors in Locust Neurons Compared to Mouse N1E-115 and BC3H1 CellsPesticide Biochemistry and Physiology, 1994
- High Affinity Binding of [3H]Imidacloprid in the Insect Acetylcholine ReceptorPesticide Biochemistry and Physiology, 1993
- GUIDELINE ON TEST METHODS FOR EVALUATING THE SIDE‐EFFECTS OF PLANT PROTECTION PRODUCTS ON HONEYBEESEPPO Bulletin, 1992
- Pesticides and PollinatorsAnnual Review of Entomology, 1977