Photoinduced Charge Transfer and Efficient Solar Energy Conversion in a Blend of a Red Polyfluorene Copolymer with CdSe Nanoparticles

Abstract
We present measurements of charge transfer and the photovoltaic effect in a blend of the alternating polyfluorene copolymer poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4‘,7‘-di-2-thienyl-2‘,1‘,3‘-benzothiadiazole)) with branched CdSe nanoparticles. Quasi-steady-state photoinduced absorption measurements identified a long-lived charged species that formed after photoexcitation at room temperature. Photovoltaic devices based on this blend system showed a spectral response extending to 650 nm and gave a solar power conversion efficiency of 2.4% under Air Mass 1.5 Global (AM1.5G) conditions.