The differential cytotoxicity of RSU 1069: Cell survival studies indicating interaction with DNA as a possible mode of action
Open Access
- 28 February 1986
- journal article
- research article
- Published by Springer Nature in British Journal of Cancer
- Vol. 53 (3) , 339-344
- https://doi.org/10.1038/bjc.1986.57
Abstract
The hypoxic cell radiosensitizer RSU 1069 (1-(2-nitro-1-imidazolyl)-3-(1-aziridinyl)-2-propanol) shows, on a concentration basis, a 100-fold greater toxicity towards hypoxic relative to aerobic cells. This toxicity is substantially greater than that of misonidazole, a compound of similar electron affinity. Reductive processes are important for hypoxic toxicity; this is demonstrated by the fact that misonidazole, in excess, can protect against the hypoxic but not aerobic toxicity of RSU 1069. The importance of the interaction of RSU 1069 with DNA, suggested initially by molecular studies, is supported by the fact that cells containing 5-bromodeoxyuridine (5-BUdR) incorporated into their DNA show greater sensitivity towards the lethal effects of RSU 1069 both in air and nitrogen, compared to cells not treated with 5-BUdR. Experiments with RSU 1069 and 3-aminobenzamide (3-AB) show the latter compound to potentiate aerobic toxicity, consistent with monofunctional alkylation by RSU 1069. In contrast, 3-AB has no effect on the hypoxic cytotoxicity of RSU 1069, which would be predicted if RSU 1069 is functioning as a bifunctional agent under these conditions. It is our contention that in air, RSU 1069 functions as a typical monofunctional alkylating agent, presumably due to the presence of the aziridine group whereas, in hypoxia, reduction of the nitro group provides an additional alkylating species, converting the compound into a bifunctional agent.Keywords
This publication has 19 references indexed in Scilit:
- Induction of DNA strand breaks by RSU-1069, a nitroimidazole-aziridine radiosensitizerBiochemical Pharmacology, 1985
- Chemopotentiation by CB 1954: The importance of postincubations and the possible involvement of poly(ADP-ribosylation)International Journal of Radiation Oncology*Biology*Physics, 1984
- RSU 1069, a 2-nitroimidazole containing an alkylating group: High efficiency as a radio- and chemosensitizer in vitro and in vivoInternational Journal of Radiation Oncology*Biology*Physics, 1984
- Photosensitive interaction of RSU 1069 with DNAInternational Journal of Radiation Oncology*Biology*Physics, 1984
- Thiol Reactive Nitroimidazoles: Radiosensitization Studiesin Vitroandin VivoInternational Journal of Radiation Biology, 1984
- The Enhancement of Cytotoxicity of N‐Methyl‐N‐nitrosourea and of y‐Radiation by Inhibitors of Poly(ADP‐ribose) PolymeraseEuropean Journal of Biochemistry, 1980
- The Involvement of Poly(ADP‐ribose) Polymerase in the Degradation of NAD Caused by γ‐Radiation and N‐Methyl‐N‐NitrosoureaEuropean Journal of Biochemistry, 1979
- Survival response of asynchronous and synchronous Chinese hamster cells exposed to fluorescent light following 5-bromodeoxyuridine incorporationMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1972
- Increased sensitivity of mammalian cell cultures to radiomimetic alkylating agents following incorporation of 5-bromodeoxyuridine into cellular DNABiochemical Pharmacology, 1966
- GENETICS OF HUMAN CELL LINESThe Journal of Experimental Medicine, 1960