Replication of HIV Type 1 in Rabbit Cell Lines Is Not Limited by Deficiencies intat, rev, or Long Terminal Repeat Function

Abstract
HIV-1 infection has been documented in rabbits, but infection proceeds slowly in this species. Human and rabbit cell lines were compared in order to identify barriers to efficient HIV-1 infection of rabbit cells. A direct comparison of human and rabbit CD4 as receptor for HIV-1 indicated that the rabbit CD4 homolog did not function well even when expressed by human cells. Examination of viral RNA production indicated that the major HIV transcripts were produced in HIV-infected rabbit cells, but were present at levels significantly lower than those found for human cells. Ability of HIV-1 LTRs to direct protein expression in human and rabbit cells was compared using gene constructs with the chloramphenicol acetyltransferase (cat) gene flanked by HIV-1 LTRs. Chloramphenicol acetyltransferase protein expression was equivalent in rabbit and human cell lines transfected with the HIV-1/CAT constructs and cotransfections with the HIV-1 tat gene led to similar increases in CAT expression. Subsequent transfections with an infectious molecular HIV clone yielded approximately equal levels of HIV protein expression in rabbit and human cell lines, suggesting that major barriers to virus production in rabbit lines exist at steps prior to transcription of the viral genome. Because HTLV-I replicates with high efficiency in rabbit cells, a chimeric virus clone was constructed consisting of the 5′ portion of HIV-1 through the nef coding sequence followed by the 3′ HTLV-I LTR. Transfection of most rabbit cell lines with the chimera produced levels of p24gag protein higher than those transfected with the parent HIV-1 clone. By contrast, the unmodified HIV clone replicated more efficiently in all human cell lines tested.