Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context
Open Access
- 2 June 2007
- journal article
- software
- Published by Springer Nature in BMC Bioinformatics
- Vol. 8 (1) , 1-12
- https://doi.org/10.1186/1471-2105-8-179
Abstract
Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at http://gepat.sourceforge.net . GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at http://gepat.bioapps.biozentrum.uni-wuerzburg.de .Keywords
This publication has 30 references indexed in Scilit:
- Ensembl 2007Nucleic Acids Research, 2006
- STRING 7--recent developments in the integration and prediction of protein interactionsNucleic Acids Research, 2006
- CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysisNucleic Acids Research, 2006
- Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival predictionBlood, 2005
- Ontological analysis of gene expression data: current tools, limitations, and open problemsBioinformatics, 2005
- Computational Assignment of the EC Numbers for Genomic-Scale Analysis of Enzymatic ReactionsJournal of the American Chemical Society, 2004
- Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray ExperimentsStatistical Applications in Genetics and Molecular Biology, 2004
- Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction NetworksGenome Research, 2003
- Comparative genomic hybridization: Uses and limitationsSeminars in Hematology, 2000
- Distinct types of diffuse large B-cell lymphoma identified by gene expression profilingNature, 2000