The dynamics of density dependent population models

Abstract
The dynamics of density-dependent population models can be extraordinarily complex as numerous authors have displayed in numerical simulations. Here we commence a theoretical analysis of the mathematical mechanisms underlying this complexity from the viewpoint of modern dynamical systems theory. After discussing the chaotic behavior of one-dimensional difference equations we proceed to illustrate the general theory on a density-dependent Leslie model with two age classes. The pattern of bifurcations away from the equilibrium point is investigated and the existence of a “strange attractor” is demonstrated — i.e. an attracting limit set which is neither an equilibrium nor a limit cycle. Near the strange attractor the system exhibits essentially random behavior. An approach to the statistical analysis of the dynamics in the chaotic regime is suggested. We then generalize our conclusions to higher dimensions and continuous models (e.g. the nonlinear von Foerster equation).