Abstract
An analysis of the experimental data on Cs satellite bands in the spectra of gaseous mixtures suggests the existence of auxiliary minima and relative maxima in the excited‐state potential curves representing binary interactions between colliding atoms and molecules. The auxiliary minima are indicated for interactions of the radiating atoms with the foreign‐gas molecules which produce a red shift of the atomic spectral lines (exhibit the Ramsauer—Townsend effect). The relative maxima are indicated for interactions of the radiating atoms with the foreign‐gas molecules which produce a violet shift of the atomic spectral lines (do not exhibit the Ramsauer—Townsend effect). The depth of the auxiliary minima and the height of the relative maxima are determined primarily by the effective cross sections of the foreign‐gas molecules for collisions with the valence electrons of the radiating atoms. The assumption of such minima and maxima leads to a plausible explanation of most experimentally determined properties of the alkali—foreign‐gas satellite bands.