Pushing Structural Information into the Yeast Interactome by High-Throughput Protein Docking Experiments
Open Access
- 28 August 2009
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Computational Biology
- Vol. 5 (8) , e1000490
- https://doi.org/10.1371/journal.pcbi.1000490
Abstract
The last several years have seen the consolidation of high-throughput proteomics initiatives to identify and characterize protein interactions and macromolecular complexes in model organisms. In particular, more that 10,000 high-confidence protein-protein interactions have been described between the roughly 6,000 proteins encoded in the budding yeast genome (Saccharomyces cerevisiae). However, unfortunately, high-resolution three-dimensional structures are only available for less than one hundred of these interacting pairs. Here, we expand this structural information on yeast protein interactions by running the first-ever high-throughput docking experiment with some of the best state-of-the-art methodologies, according to our benchmarks. To increase the coverage of the interaction space, we also explore the possibility of using homology models of varying quality in the docking experiments, instead of experimental structures, and assess how it would affect the global performance of the methods. In total, we have applied the docking procedure to 217 experimental structures and 1,023 homology models, providing putative structural models for over 3,000 protein-protein interactions in the yeast interactome. Finally, we analyze in detail the structural models obtained for the interaction between SAM1-anthranilate synthase complex and the MET30-RNA polymerase III to illustrate how our predictions can be straightforwardly used by the scientific community. The results of our experiment will be integrated into the general 3D-Repertoire pipeline, a European initiative to solve the structures of as many as possible protein complexes in yeast at the best possible resolution. All docking results are available at http://gatealoy.pcb.ub.es/HT_docking/. Proteins are the main perpetrators of most biological processes. However, they seldom act alone, and most cellular functions are, in fact, carried out by large macromolecular complexes and regulated through intricate protein-protein interaction networks. Consequently, large efforts have been devoted to unveil protein interrelationships in a high-throughput manner, and the last several years have seen the consecution of the first interactome drafts for several model organisms. Unfortunately, these studies only reveal whether two proteins interact, but not the molecular bases of these interactions. A full comprehension of how proteins bind and form complexes can only come from high-resolution, three-dimensional (3D) structures, since they provide the key quasi-atomic details necessary to understand how the individual components in a complex or pathway are assembled and coordinated to function as a molecular unit. Here, we use protein docking experiments, in a high-throughput manner, to predict the 3D structure of over 3,000 interactions in yeast, which will be used to complement the complex structures obtained within the 3D-Repertoire pan-European initiative (http://www.3drepertoire.org).Keywords
This publication has 68 references indexed in Scilit:
- Protein–protein docking benchmark version 3.0Proteins-Structure Function and Bioinformatics, 2008
- MINT: the Molecular INTeraction databaseNucleic Acids Research, 2006
- Global landscape of protein complexes in the yeast Saccharomyces cerevisiaeNature, 2006
- Proteome survey reveals modularity of the yeast cell machineryNature, 2006
- Towards a proteome-scale map of the human protein–protein interaction networkNature, 2005
- IntAct: an open source molecular interaction databaseNucleic Acids Research, 2004
- Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometryNature, 2002
- Functional organization of the yeast proteome by systematic analysis of protein complexesNature, 2002
- A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences, 2001
- SGD: Saccharomyces Genome DatabaseNucleic Acids Research, 1998