Scaling and the Fractal Geometry of Two-Dimensional Quantum Gravity
Preprint
- 14 April 1995
Abstract
We examine the scaling of geodesic correlation functions in two-dimensional gravity and in spin systems coupled to gravity. The numerical data support the scaling hypothesis and indicate that the quantum geometry develops a non-perturbative length scale. The existence of this length scale allows us to extract a Hausdorff dimension. In the case of pure gravity we find d_H approx. 3.8, in support of recent theoretical calculations that d_H = 4. We also discuss the back-reaction of matter on the geometry.Keywords
All Related Versions
- Version 1, 1995-04-14, ArXiv
- Published version: Physics Letters B, 354 (1-2), 58.
This publication has 0 references indexed in Scilit: