Abstract
A control systems model consisting of a population of weakly-coupled feedback oscillators has been developed to simulate the circadian locomotor rhythm of the insect, Hemideina thoracica (Orthoptera; Stenopelmatidae). The model is an extension of a previously published single oscillator feedback model (Gander and Lewis, 1979) which successfully simulates entrainment, phase response curves, temperature compensation and Aschoff's Rule for Hemideina activity rhythms. The population model described here has the additional properties of predicting some of the free-run period lability (Pavlidis, 1978a, b) observed in the Hemideina rhythm (Christensen and Lewis, 1982) which is unexplained by single oscillator systems. Model behaviour is compared with the experimental data derived from the insect activity rhythms.