Functional integration of cortical grafts placed in brain infarcts of rats

Abstract
Five to 6 days after a right middle cerebral artery occlusion, a cell suspension of fetal neocortex was grafted into the infarcted area of adult spontaneously hypertensive rats. Three to 17 months later, functional integration of the grafts into the afferent somatosensory pathway was tested using the 2-[14C]deoxyglucose method for estimation of glucose utilization. Grafted rats (n = 8) and control rats (n = 5) with no arterial occlusion were stimulated in the left vibrissal region resulting in an increased glucose utilization in the left trigeminal sensory nucleus and the right ventroposterior nucleus of the thalamus, whereas the same regions in a group (n = 5) of nonstimulated grafted rats were not activated. Glucose uptake in the right somatosensory cortex of control rats was 96 ± 5 (mean ± SEM) μmol/100 gm/min. Neocortical grafts consumed less glucose than cortex in control rats but the vibrissae-stimulated group displayed a 110% higher value than the nonstimulated grafted group (32 ± 5 vs 15 ± 2, p < 0.05). We conclude that graft glucose metabolism is increased following stimulation of the host somatosensory pathway, which demonstrates that transplanted neurons can be functionally integrated with neural circuitries of the host after an ischemic insult.

This publication has 26 references indexed in Scilit: