Comparison of Sphingosine 1-Phosphate–Induced Intracellular Signaling Pathways in Vascular Smooth Muscles

Abstract
Sphingosine 1-phosphate (S1P), a lipid released from activated platelets, influences physiological processes in the cardiovascular system via activation of the endothelial differentiation gene (EDG/S1P) family of 7 transmembrane G protein–coupled receptors. In cultured vascular smooth muscle (VSM) cells, S1P signaling has been shown to stimulate proliferative responses; however, its role in vasoconstriction has not been examined. In the present study, the effects of S1P and EDG/S1P receptor expression were determined in rat VSM from cerebral artery and aorta. S1P induced constriction of cerebral artery, which was partly dependent on activation of p160ROCK (Rho-kinase). S1P also induced activation of RhoA in cerebral artery with a similar time course to contraction. In aorta, S1P did not produce a constriction or RhoA activation. In VSM myocytes from cerebral arteries, stimulation with S1P gives rise to a global increase in [Ca2+]i, initially generated via Ca2+ release from the sarcoplasmic reticulum by an inositol 1,4,5-trisphosphate–dependent pathway. In aorta VSM, a small increase in [Ca2+]i was observed after stimulation at higher concentrations of S1P. S1P induced activation of p42/p44mapk in aorta and cerebral artery VSM. Subtype-specific S1P receptor antibodies revealed that the expression of S1P3/EDG-3 and S1P2/EDG-5 receptors is 4-fold higher in cerebral artery compared with aorta. S1P1/EDG-1 receptor expression was similar in both types of VSM. Therefore, the ability of S1P to act as a vasoactive mediator is dependent on the activation of associated signaling pathways and may vary in different VSM. This differential signaling may be related to the expression of S1P receptor subtypes.