Nematic order of model goethite nanorods in a magnetic field

Abstract
We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative which leads to a preferred perpendicular orientation at higher field strength. It is shown that these counteracting effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and the presence of reentrant phase transitions and demixing phenomena. The effect of the applied field on the nematic-to-smectic transition will also be addressed.

This publication has 0 references indexed in Scilit: