Abstract
The self-sterility ofHalocynthia roretzi from Mutsu Bay, Japan, was examined. This sterility is strict and not a single egg can be fertilized in self-sterile animals. Less than 2% of the animals were self-fertile (with 100% cross-fertility). All heterologous sperm can fertilize all eggs, although there are pairs of individuals in which the coelomocytes recognize each other as self. Eggs deprived of follicle cells cannot be fertilized by either autologous or heterologous spermatozoa. Detached autologous or heterologous follicle cells can reattach to the chorion in calcium-enriched sea water and the reconstituted eggs recover their ability to be fertilized. A “mosaic egg” can therefore be obtained, which consists of oocyte, test cells and chorion originating from one individual and follicle cells from another. The “mosaic egg” was used to determine the site of recognition of self and non-self. The results indicate that the recognition resides in the chorion and/or test cells, probably the chorion. The relationship between somatic alloreactivity, previously found in coelomocytes ofH. roretzi, and gamete reactivity is discussed.