Glucose kinetics during prolonged exercise in euglycaemic and hyperglycaemic subjects
- 1 March 1994
- journal article
- research article
- Published by Springer Nature in Pflügers Archiv - European Journal of Physiology
- Vol. 426 (5) , 378-386
- https://doi.org/10.1007/bf00388300
Abstract
To determine the limits to oxidation of exogenous glucose by skeletal muscle, the effects of euglycaemia (plasma glucose 5 mM, ET) and hyperglycaemia (plasma glucose 10 mM, HT) on fuel substrate kinetics were evaluated in 12 trained subjects cycling at 70% of maximal oxygen uptake (VO2, max) for 2 h. During exercise, subjects ingested water labelled with traces of U-14C-glucose so that the rates of plasma glucose oxidation (R ox) could be determined from plasma 14C-glucose and expired 14CO2 radioactivities, and respiratory gas exchange. Simultaneously, 2-3H-glucose was infused at a constant rate to estimate rates of endogenous glucose turnover (R a), while unlabelled glucose (25% dextrose) was infused to maintain plasma glucose concentration at either 5 or 10 mM. During ET, endogenous liver glucose R a (total R a minus the rate of infusion) declined from 22.4±4.9 to 6.5±1.4 μmol/min per kg fat-free mass [FFM] (PR ox increased to 152±21 and 61±10 μmol/min per kg FFM at the end of HT and ET respectively (PPP<0.0001). As the rates of oxidation at more physiological euglycaemic concentrations of glucose were limited to 92±9 μmol/ min per kg FFM, and were similar to those reported when carbohydrate is ingested, the results of the current study suggest that the concentrations of glucose and insulin normally present during prolonged, intense exercise may limit the rate of muscle glucose uptake and oxidation.Keywords
This publication has 34 references indexed in Scilit:
- Oxidation of Carbohydrate Ingested During Prolonged Endurance ExerciseSports Medicine, 1992
- Peak power output predicts maximal oxygen uptake and performance time in trained cyclistsEuropean Journal of Applied Physiology, 1992
- Exogenous carbohydrate oxidation from maltose and glucose ingested during prolonged exerciseEuropean Journal of Applied Physiology, 1992
- Plasma Glucose Metabolism During Exercise in HumansSports Medicine, 1991
- Protein and Energy Metabolism During Prolonged Exercise in Trained Athletes*International Journal of Sports Medicine, 1989
- Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supplyMetabolism, 1985
- Adrenergic Mechanisms for the Effects of Epinephrine on Glucose Production and Clearance in ManJournal of Clinical Investigation, 1980
- Role of Insulin and Glucagon in the Regulation of Hepatic Glucose Production During ExerciseDiabetes, 1979
- Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 YearsBritish Journal of Nutrition, 1974
- INTUBATION STUDIES OF THE HUMAN SMALL INTESTINEThe Lancet Healthy Longevity, 1940