Extrasolar Giant Planets under Strong Stellar Irradiation

Abstract
We investigate the effects on extrasolar giant planets [EGPs] of intense irradiation by their parent stars, describing the issues involved in treating the model atmosphere problem correctly. We treat the radiative transfer in detail, allowing the flux from the parent star to interact with all relevant depths of the planetary atmosphere, with no need for a pre-assumed albedo. We present a low-resolution optical and near-IR spectrum of a close-in EGP, focusing on the differences from an isolated planet. In our dust-free planetary atmospheres we find that Rayleigh scattering increases the EGP's flux by orders of magnitude shortward of the CaII H&K doublet (393 nm), and the spectral features of the parent star are exactly reflected. In the optical and near-IR the thermal absorption of the planet takes over, but the absorption features are changed by the irradiation. The inclusion of dust increases the reflected flux in the blue; the stellar spectral lines can be seen blueward of H-beta (486 nm).

This publication has 0 references indexed in Scilit: