Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors

Abstract
Inappropriately low reticulocytosis may exacerbate malarial anemia, but the under-lying mechanism is not clear. In this study, naive and infected mice were treated with recombinant murine erythropoietin (EPO), and the upstream events of erythropoiesis affected by blood-stage Plasmodium chabaudi AS were investigated. Malaria infection, with or without EPO treatment, led to a suboptimal increase in TER119+ erythroblasts compared with EPO-treated naive mice. Furthermore, a lower percentage of TER119+ erythroblasts in infected mice were undergoing terminal differentiation to become mature hemoglobin-producing erythroblasts. The impaired maturation of erythroblasts during infection was associated with a shift in the transferrin receptor (CD71) expression from the TER119+ population to B220+ population. Moreover, the suboptimal increase in TER119+ erythroblasts during infection coincided with a blunted proliferative response by splenocytes to EPO stimulation in vitro, although a high frequency of these splenocytes expressed EPO receptor (EPOR). Taken together, these data suggest that during malaria, EPO-induced proliferation of early EPOR-positive erythroid progenitors is suppressed, which may lead to a suboptimal generation of TER119+ erythroblasts. The shift in CD71 expression may result in impaired terminal maturation of these erythroblasts. Thus, inadequate reticulocytosis during malaria is associated with suppressed proliferation, differentiation, and maturation of erythroid precursors.