The de Haas–van Alphen effect and the h.c.p.–f.c.c. phase transformation of ytterbium were studied with the magnetic field along the [0001] direction in the h.c.p. phase, using pressures up to 4 kbar. Solid helium was used as the pressure medium. The pressure dependence of the three dHvA frequencies in the h.c.p. phase for the [0001] magnetic field direction was linear within experimental error with dF/dP = −1.2 ± 0.2 T/kbar for F(P = 0) of 35.4 T, dF/dP = 0.30 ± 0.03 T/kbar for F(P = 0) of 142.5 T, and dF/dP = −0.78 ± 0.10 T/kbar for F(P = 0) of 156.4 T. The dHvA amplitude in the h.c.p. phase was independent of pressure up to the phase transition and no dHvA effect was observed in the f.c.c. phase. The pressure of the phase transformation at 1.2 K was determined to be 2.15 ± 0.05 kbar.