Inverse scattering via Heisenberg's uncertainty principle
- 1 April 1997
- journal article
- Published by IOP Publishing in Inverse Problems
- Vol. 13 (2) , 253-282
- https://doi.org/10.1088/0266-5611/13/2/005
Abstract
We present a stable method for the fully nonlinear inverse scattering problem of the Helmholtz equation in two dimensions. The new approach is based on the observation that ill-posedness of the inverse problem can be beneficially used to solve it. This means that not all equations of the nonlinear problem are strongly nonlinear due to the ill-posedness, and that when solved recursively in a proper order, they can be reduced to a collection of essentially linear problems. The algorithm requires multi-frequency scattering data, and the recursive linearization is acheived by a standard perturbational analysis on the wavenumber k. At each frequency k, the algorithm determines a forward model which produces the prescribed scattering data. It first solves nearly linear equations at the lowest k to obtain low-frequency modes of the scatterer. The approximation is used to linearize equations at the next higher k to produce a better approximation which contains more modes of the scatterer, and so on, until a sufficiently high wavenumber k where the dominant modes of the scatterer are essentially recovered. The robustness of the procedure is demonstrated by several numerical examples.Keywords
This publication has 3 references indexed in Scilit:
- A Convergent Layer Stripping Algorithm for the Radially Symmetric Impedence Tomography ProblemCommunications in Partial Differential Equations, 1992
- Rapid solution of integral equations of scattering theory in two dimensionsJournal of Computational Physics, 1990
- Linearized inverse scattering problems in acoustics and elasticityWave Motion, 1990