The geochronology of uraniferous minerals in the Witwatersrand Triad; an interpretation of new and existing U-Pb age data on rocks and minerals from the Dominion Reef, Witwatersrand and Ventersdorp Supergroups
- 12 September 1977
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
- Vol. 286 (1336) , 567-583
- https://doi.org/10.1098/rsta.1977.0132
Abstract
Uranium and lead analyses of rock samples from the Witwatersrand, Ventersdorp, and Transvaal supergroups give mainly discordant ages. Samples from the Upper Witwatersrand of the Orange Free State give 207 Pb/ 206 Pb ages of ca. 3000 Ma. These data when considered together with earlier total conglomerate U -Pb analyses from the Dominion Reef Supergroup lead to the conclusion that the uraniferous minerals of the Dominion Reef, Witwatersrand, Ventersdorp and Transvaal conglomerates are 3050 ± 50 Ma old. In the northern parts of the Witwatersrand Basin the parent uraniferous minerals experienced a major reworking at 2040 ± 100 Ma which brought about the partial or complete resetting of the original 3050 Ma age. Radiogenic lead released during this reworking crystallized as galena in veins and fissures which cut across the uraniferous conglomerate horizons. This reworking appears to have had little effect in the Orange Free State to the south. Its age and geographical extent suggest it was caused by thermal effects which accompanied the emplacement of the Bushveld Igneous Complex at 1950 ± 150 Ma. Samples from the south, which were relatively unaffected by the ca. 2040 Ma reworking generally show the effects of recent uranium loss. In the northern part of the basin discordant age patterns characteristic of lead loss have been imposed on uranium-lead systems which were generally reset (partially or completely) by the ca. 2040 Ma event. The presence of 3050 Ma old minerals in sedimentary sequences which are probably younger than ca. 2740 Ma suggests the simple interpretation that the uraniferous minerals are predominantly detrital.Keywords
This publication has 0 references indexed in Scilit: