Compensatory hypertrophy of skeletal muscle fibers in streptozotocin-diabetic rats

Abstract
Previous studies have demonstrated an apparent differential response of the fiber types in mixed skeletal muscles of rats to streptozotocin diabetes. The purpose of the present study was to examine the ability of the different fiber types to hypertrophy in muscles from diabetic rats, which should further clarify the apparent differential trophic influence of insulin on the fibers. One group of rats was injected with streptozotocin to induce diabetes. The gastrocnemius muscle was then removed from one hindlimb of rats of both the diabetic and a second, normal group, resulting in compensatory growth of ipsilateral plantaris muscle. Rats were sacrificed 60 days following the surgery. Experimental muscles in normal and diabetic rats enlarged 79% and 61% over control muscles, respectively. In normal hypertrophied muscles there was an 8% increase in relative cross-sectional area composed of slow-twitch fibers, whereas in diabetic rats the slow-twitch component increased 17%. The results indicate that slow-twitch fibers in diabetic rats were capable of responding to the chronic power overloaded condition, but that the fast-twitch fibers had a reduced capacity to undergo compensatory growth. These findings support our previous observations suggesting that insulin may exert a differential trophic effect upon the muscle fiber types.