Functional Equivalency and Diversity of cis-Acting Elements among Yeast Replication Origins
Open Access
- 1 September 1997
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 17 (9) , 5473-5484
- https://doi.org/10.1128/mcb.17.9.5473
Abstract
The DNA replication origins of the yeast Saccharomyces cerevisiae require several short functional elements, most of which are not conserved in sequence. To better characterize ARS305, a replicator from a chromosomal origin, we swapped functional DNA elements of ARS305 with defined elements of ARS1. ARS305 contains elements that are functionally exchangeable with ARS1 A and B1 elements, which are known to bind the origin recognition complex; however, the ARS1 A element differs in that it does not require a 3' box adjacent to the essential autonomously replicating sequence consensus. At the position corresponding to ARS1 B3, ARS305 has a novel element, B4, that can functionally substitute for every type of short element (B1, B2, and B3) in the B domain. Unexpectedly, the replacement of element B4 by ARS1 B3, which binds ABF1p and is known as a replication enhancer, inhibited ARS305 function. ARS305 has no short functional element at or near positions corresponding to the B2 elements in ARS1 and ARS307 but contains an easily unwound region whose functional importance was supported by a broad G+C-rich substitution mutation. Surprisingly, the easily unwound region can functionally substitute for the ARS1 B2 element, even though ARS1 B2 was found to possess a distinct DNA sequence requirement. The functionally conserved B2 element in ARS307 contains a known sequence requirement, and helical stability analysis of linker and minilinker mutations suggested that B2 also contains a DNA unwinding element (DUE). Our findings suggest that yeast replication origins employ a B2 element or a DUE to mediate a common function, DNA unwinding during initiation, although not necessarily through a common mechanism.Keywords
This publication has 72 references indexed in Scilit:
- Multiple determinants controlling activation of yeast replication origins late in S phase.Genes & Development, 1996
- Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast.Genes & Development, 1996
- DNA replication: Controlling initiation during the cell cycleCurrent Biology, 1996
- An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeastNature, 1996
- ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genomeCell, 1995
- DNA Helical Instability Facilitates Initiation at the SV40 Replication OriginJournal of Molecular Biology, 1994
- A question of time: Replication origins of eukaryotic chromosomesCell, 1992
- ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complexNature, 1992
- Structural requirements for the function of a yeast chromosomal replicatorCell, 1984
- Initiation of SV40 DNA replication in vivo: Location and structure of 5′ ends of DNA synthesized in the ori regionCell, 1982