Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane–air diffusion flame

Abstract
The application of tunable diode lasers for in situ diagnostics in laminar hydrocarbon diffusion flames is demonstrated. By the use of both direct-absorption and wavelength-modulation (second-derivative) techniques, carbon monoxide concentrations and the local flame temperature are determined for a laminar methane–air diffusion flame supported on a Wolfhard–Parker slot burner. In both cases the results are found to be in excellent agreement with prior measurements of these quantities using both probe and optical techniques.