Deafferentation‐induced changes in neuropeptides of the adult rat dorsal horn following pronase injection of the sciatic nerve

Abstract
The effect of deafferentation on the neuropeptides substance P (SP), calcitonin generelated peptide (CGRP), somatostatin (SS), and cholecystokinin (CCK) in the lumbar dorsal horn of the adult rat was examined by the indirect immunohistochemical method. Deafferentation was induced by injecting the sciatic nerve of anesthetized rats with proteolytic enzymes (20 mg pronase), which cause selective death of the nerve's ganglion cells and degeneration of their terminal arborization in the spinal cord. The density of immunolabel of each peptide was determined by using a computerized densitometry analysis system in two animal groups, i.e., short-term (10–13 days after injection) and long-term (4–9 months). In both groups, the deafferentation produced a significant ipsilateral depletion of CGRP, SP, CCK, and SS immunoreactivity. This depletion was limited to the area occupied by the sciatic terminals in the dorsal horn. In the long-term group, the loss of CGRP and SP staining was significantly less than that in the short-term animals, thus indicating partial recovery. A similar, but not statistically significant, trend was observed for CCK and SS. The large decrease in CGRP and SP seen in short-term animals reflects the large contribution of the sciatic nerve to the lumbar dorsal horn. The partial recovery of peptides demonstrates the plasticity of the nervous system and may parallel sprouting of primary afferents from other nerves, such as the saphenous nerve, as we have demonstrated in previous studies.

This publication has 61 references indexed in Scilit: