Oxidative Protein Damage with Carbohydrates and Lipids in Uremia: ‘Carbonyl Stress’
- 1 July 1999
- journal article
- review article
- Published by S. Karger AG in Blood Purification
- Vol. 17 (2-3) , 95-98
- https://doi.org/10.1159/000014380
Abstract
Chronic uremia appears to be in a state of an increased oxidative stress. Under oxidative stress, proteins are modified directly by reactive oxygen species with the eventual formation of oxidised amino acids. Proteins are also modified indirectly with reactive carbonyl compounds formed by the autoxidation of carbohydrates and lipids, with the eventual formation of the advanced glycation/lipoxidation end products (AGEs/ALEs). AGEs, pentosidine and carboxymethyllysine (CML), and ALE, malondialdehyde (MDA)-lysine, are elevated in plasma and matrix proteins of uremic patients several times above normal subjects. Precursor carbonyl compounds derived from carbohydrates and lipids are indeed elevated in uremic circulation. Uremia thus appears to be in a state of carbonyl overload with potentially damaging proteins (carbonyl stress). Carbonyl stress might be relevant to long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and atherosclerosis. Immunohistochemical studies identified carbonyl stress in long-lived amyloid deposits and vascular lesions. Proteins modified under carbonyl stress exhibit several biological activities, which might, at least in part, account for the development of joint and vascular complications in uremia.Keywords
This publication has 4 references indexed in Scilit:
- Carbonyl compounds cross-link cellular proteins and activate protein-tyrosine kinase p60c-SrcJournal of Cellular Biochemistry, 1999
- Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: Is there oxidative stress in uremia?Kidney International, 1998
- Identification of pentosidine as a native structure for advanced glycation end products in beta-2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis.Proceedings of the National Academy of Sciences, 1996
- Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydesFree Radical Biology & Medicine, 1991